COVID-19 blends: A new phenomenon in English Neologisms

Nurhalimah Amiruddin a ${ }^{\text {a }}$ (ID, Abdul Hakim Yassi ${ }^{\text {b }}$ (iD, Sukmawaty ${ }^{\text {c (iD }}$
${ }^{\text {a,b,c }}$ Department of English Language Studies, Hasanuddin University, Indonesia

APA Citation:

Amiruddin, N., Yassi, A.H., \& Sukmawaty, S. (2021). COVID-19 blends: A new phenomenon in English neologisms. Journal of Language and Linguistic Studies, 17(3), 1690-1710.
Submission Date:24/05/2021
Acceptance Date:20/08/2021

Abstract

The use of technology as an interaction medium during the period of social activity restrictions in the era of the COVID-19 pandemic presents the phenomenon of the emergence of neologisms. This research was conducted to determine the types of word formation, especially the blending process in COVID-19 neologisms and what types of blending are most widely used by the community and how influential the written and oral nelogisms are in the process of introducing themselves to the community. This research is a qualitative research. Two hundred neologisms data have been collected since the first case of COVID-19 on December 8, 2019 to January 31, 2022. The data sources come from official government websites, social media, dictionaries of slang words and phrases, and other COVID-19 neologisms on the internet. Each neologism resulting from the blending process is classified according to the type of blending and the blending process is analyzed. Results are presented in the form of final totals. We found 105 data in the category of blends with phonemic overlap and clipping as the most widely used blending type during the COVID-19 pandemic and both graphemic and phonemic components have an influence on the introduction of blending, although the overlapping part does not have much effect. Another fact has been found that a new blending type consisting of three words has the same effect of introducing neologisms as the neologisms of two words.

Keywords: COVID-19; Blends; Neologisms; word formation; qualitative

1. Introduction

The COVID-19 pandemic has been declared a global pandemic (Chatterjee, 2021). This causes previously stable conditions to become unstable due to restrictions on mobility and social interaction. Restrictions imposed by the government make it difficult for people to meet and communicate with each other as usual. Everything is done individually by implementing strict health protocols for the common good (Gryksa \& Neumann, 2022).

Various activities such as school and work are carried out online (Melgaard et al., 2022; Shendell et al., 2021). However, this does not reduce the enthusiasm of the community to stay in touch by utilizing technological media such as social media and teleconferencing applications (Ahmad \& Tchantchaleishvili, 2021). The use of this media presents a new phenomenon in the development of language as the main human communication tool. Celik \& Dogan (2021) added that interactional use of social media might contribute to justifying information and enables human to understand the new media literacy.

[^0]The spread of COVID-19 is in line with the spread of new words and terms without being able to be controlled. As a society living during a pandemic, we need to know the information that spreads clearly in order to protect ourselves from the disease caused by the coronavirus. The information that spreads can be in the form of discourse, short paragraphs, or the simplest is words. Often in some news in print media or online media we come across foreign words that are interesting to understand. These words usually appear in news headlines that are currently popular, but these words are not completely foreign, but we can guess the components of natural word formation. It is undeniable that humans have a high curiosity about current issues, the use of interesting words by news makers will directly attract people's interest to know the information presented as a whole. It has also been stated by Perez \& Arias (2022) that information received through the media can describe the relationship between sociocultural factors and the level of sentiment on issues related to the COVID-19 pandemic. In line with that, understanding words and their constituent components is very important to be able to understand information clearly and accurately and avoid miscommunication.

Another similar media is social media which is currently very close to people's lives. Words develop very rapidly without even realizing we have absorbed a lot of new words just from scrolling on various social media. When we encounter foreign words, we will feel smart because we can guess the meaning of the word only based on its constituent components.

The phenomenon of COVID-19 is a determinant of human survival as well as the basis for language development in the future. Based on these urgencies, researchers have an important role to play in knowing how words can develop in certain eras so that they can contribute to society in understanding information in the form of new words that appear during the COVID-19 pandemic.

Anderson (2006) stated that new words created and developed over a certain period of time are called neologisms. Neologism comes from Ancient Greek - néo-, "new" and lógos, "word, speech". Badiu \& Anderson (2001) made it clear that a word, term or phrase that is relatively new and its use is still rare or is entering the process of general acceptance is neologism. This is why most neologisms are not found in dictionaries (Stenetorp, 2010). However, not all words that are not in the dictionary can be categorized as neologisms, therefore Newmark (1988) limited neologisms into ten types, namely old words with new senses, new coinages, abbreviations, collocations, eponyms, phrasal words, transferred words, acronyms and pseudo-neologisms.

Apart from discussing new words that emerged during the COVID-19 pandemic, like other words that have appeared before, a neologism that is created has its own constituent components or word formation processes. According to Yule (2010) word formation is a science that studies the basic process of making words and is called the morphological process. In the book The Study of Language, Yule divides the process of word formation into ten types, namely compounding, blending, clipping, backformation, conversion, coinage, acronyms, derivation, borrowing, and neologisms themselves. In the process of word formation, compounding and blending are considered as processes in creating new words or neologisms that most often produce at a certain time.

The most visible difference between compounding and blending is in the process of combining words. Where compounding combines words as a whole so that the resulting meaning looks very clear, while blending combines words through a cutting process so that the resulting word looks like a completely new word. This has attracted the interest of researchers to examine the blending process more specifically. So in this study the researchers set two problem formulations, they are: What kind of blending is the most used by people during the COVID-19 pandemic? And how influential do graphemes and phonemes have on the way people analyze blending? Regarding the formulation of the problem, this study is direct to reveal the type of blending that people use the most during the COVID19 pandemic and to explain how influential graphemes and phonemes are on how people perceive
blending. To overcome this problem, the researcher uses the word formation theory from Yule (2017) in its sixth edition of The Study of Language and several supporting theories, especially those that discuss blending and Algeo's (1977) theory of types of blending. This study will focus on emerging neologisms from the first confirmed case of COVID-19 in China on December 8, 2019 to January 31, 2022.

2. Literature Review

Asif et al., (2021) have analyzed the COVID-19 pandemic in its neologistic linguistic component. The neologism model used is from Krishnamurthy in 2010 and the onomasiological theory from Pavol Stekauer (1998). The findings of this study reveal various types of neologisms namely nouns, adjectives, and verbs, abbreviations and acronyms associated with COVID-19. This research takes a lot of neologism data from what has been researched but with a different theory and only focuses on the blending process so that the conclusions reached can complement the research that has been done.

Another study was carried out by Kitzlerova (2022) who took word formation patterns based on metonymy, which Mayakovsky used in the creation of new adjectives, names for new objects and phenomena, and neologisms used in his works so that it is known which ones succeed to the current Russian language. Corpus-based research also reveals that some of the neologisms purported to be from Mayakovsky may have simply been borrowed by Mayakovsky from other authors.

Lei et al., (2021) reveal theories about how new words emerge, the relationship between emerging neologisms and emergent events, and the use of modeling languages for epidemiological predictions. This study identifies categorization, avoidance and synthesis strategies in the creation of neologisms using data from the Baidu Index that developed in their home country, while this study takes data from everyday users on social media and the internet from all countries who use English as an international language with longer study period.

Alyeksyeyeva (2020) writes about "Coronaspeak as Key to Coronaculture: Studying New Cultural Practices Through Neologisms". This study uses a qualitative method. The output of this research is the analysis of new currencies has provided insight into corona culture to include the centrality of the corona virus in public discourse in particular and medical issues in general, the perception of the pandemic as a reference point of historical significance, the emergence of new social groups as a result of the pandemic period, reconceptualization old ideas, and advances in new communication processes.

In line with previous research, Haddad \& Montero (2020) conducted a study entitled "COVID-19 a neologism-based metaphor and its translation into Arabic". This corpus-based case study provides new insights into the creation of neologisms in English and their Arabic equivalents, and the adequacy of the use of the term 'coronavirus' in the English and Arabic mass media. The studies that have been carried out have many contrasts in terms of the use of theory, the language used, and the time span when the data was collected. Although the object of study is mostly about the analysis of new words. This research that focuses on the blending process is able to provide new knowledge regarding the use of language as a communication medium during the COVID-19 pandemic.

The presence of new words as a sign of language development from time to time cannot be separated from the process of word formation itself. As previously explained, in addition to compounding, one of the most frequently used word formation processes is blending. Compounding and blending have similarities, they use two or more basic words to be combined so that they can produce a new word. Different from compounding which combines two or more words as a whole, blending produces a new word by cutting or shortening a word and then combining it into another word. The shortening can be by simple omission of part of the word or it can be the result of overlapping sounds or letters (Algeo: 1977). Yule (2006) said that the combination of two separate
forms to produce a single new term is also present in the process called blending. Generally, blending is the process of forming new words by combining parts of two words, usually the beginning of one word and the end of another. This opinion is supported by Gries (2004) who said that the blending process involved the creation of a new lexeme by combining parts of at least two other source words, one of which is shortened and there is some form of phonemic or graphemic overlap of the source word.

People are still very rarely aware of the term blending, except for people who are involved in the field of language and its development. However, blending examples are widely used and spread very quickly. A popular example of blending is the word brunch. This word is a new word formed from a combination of two words that have existed for a long time, they are breakfast and lunch. This example has been described by Algeo in Hosseinzadeh (2014) that the term blending refers to the combination of two or more word forms, at least one of which has been shortened. There is also another word, namely broast from the words broil and roast. Algeo in Hosseinzadeh (2014) continued that shortening can be by simple omission of part of a word or it can be the result of overlapping sounds or letters. Words such as netizen which are obtained from the combination of the words internet and citizen have been heard very often everywhere, or in the case of the COVID-19 pandemic, the word ronacation which is a combination of the words corona and vacation. The examples of blending are very varied and creative, the development of the blending process in creating new words is very rapid during the COVID-19 pandemic where people rely heavily on the internet and social media as tools to stay connected with outside activities when they are required to lock down and limit mobility.

In the word formation process, blending uses several word formation processes at once to produce new words. The word formation process in question is clipping, which is cutting two basic words, and compounding, which is combining two basic words.

In the blending process, there are terms source words or basic words as a whole and splinter which is the result of the process of cutting or shortening the source word. Seeing the phenomenon of neologisms formed from very varied blending processes, it is very important to examine these blending forms as a whole. Algeo (1977) develops the classification of blends into structural types. There are three types of blends. They are blends with phonemic overlap, blends with clipping, and blends with phonemic overlap and clipping.

3. Method

This research is a qualitative research. For data collection, the researcher collected many neologisms that developed in the community by using indirect non-participant observation methods. This method makes it easier for researchers to examine various types of new words that fall within the scope of neologisms during a pandemic. This study observes the phenomenon of neologisms formed through the blending process. The neologisms collected came from the official government website that specifically discusses the spread of the corona virus, social media (Twitter, Instagram, Tik-tok, WhatsApp, Facebook, etc.), crowd sourced online dictionary for slang words and phrases such as the Urban dictionary, and various other sources on the internet suspected of being the source of COVID19 neologisms.

The neologism data that has been obtained will be analyzed using a qualitative descriptive method. This is done to detect the blending process in each neologism. The data will be displayed in the form of neologisms and blending processes. After that, neologisms will be classified according to their respective blending types. All neologism data will be entered into the table sequentially and analyzed whether there is overlap or not. This was done to get the answer to the first research question, namely
what type of blending is the most and most commonly used by the public during the COVID-19 pandemic.

Then, after getting the results of the most commonly used blending types, this neologism data will be re-analyzed to see how influential the neologism is in the process of being recognized by the public. The most commonly used neologisms will then be collected and seen the overlapping process among the neologism constituent words. After that, the data will be analyzed according to its graphemic and phonemic components to see differences in overlapping parts. This is done to identify how many parts of the word are blended (in blend / ib) and how many are not (not in blend / nib). Furthermore, the data that has been analyzed is calculated the percentage of involvement in the word recognition process by humans through writing which is marked by graphemic use and verbal which is characterized by phonemic use. In the end, the data will be represented in the form of a final total and calculated as a percent so that the results of data analysis can show the most commonly used blending types and it can be concluded how influential this blending process has on the introduction of neologisms by the public during the COVID-19 pandemic.

4. Results and Discussion

4.1 Blends with phonemic overlap

This type of blending involves the process of overlapping as the only type of word shortening. The most frequently used pattern is the one where the end of the first word overlaps the first part of the second word. The overlapping parts can be one or more phonemes and usually involve the same phonemes in the first and second words. Example; the word frenemy is formed from two overlapping words, they are the words friend and enemy. If you look closely, there are two phonemes that are the same, namely the phoneme en, so that the word frenemy can be categorized as the result of blends with overlapping. Another example that can be seen in the case of the COVID-19 pandemic is the word quaranteen which is formed from a combination of the words quarantine and teen. In quaranteen neologisms, the phoneme ten is overlapping, so this neologism can be categorized as a neologism resulting from blending with overlapping.

There is also a type of blends with slightly different overlap from the previous example where the overlap may be complete or partial. In this kind of blending, another word will enter a word so that it may have the same writing and pronunciation of the same phoneme, but given a different emphasis so that it can be realized that the word is a new form that has a different meaning from the previous meaning (Algeo: 1977). An example of this blending is the word in-sin-uation which is formed from two different words, they are \sin and insinuation. Another example in COVID-19 neologism, there is a word; social diss-tancing.

4.2 Blends with clipping

In contrast to blends with overlapping, blends with clipping do not overlap one word with another. The blending process in blends with clipping removes one part of a word and preserves the other. There are five patterns in this type of blending.

The first pattern is to keep the whole part of the first word and then combine it with the last part of the second word. An example is found in the combination of the words air and orgasm. The word air will be left intact, while the word orgasm will be clipped off and leave only the -gasm part so that it can produce an airgasm neologism.

The second pattern is to keep the intact form of the second word and only use the first part of the first word. An example is found in the combination of the words isolation and cut. The isolation word will be clipped off at the end so that only the iso-part is left, then the word cut will be left intact so that the combination results can produce a iso-cut neologism.

The third pattern is to clip the two available words, then combine the pieces of the first part of the first word with the last part of the second word. An example is found in the combination of the words delta and omicron. The word delta will be clipped off at the end so that only the del-part is left, then the word omicron will also be clipped off at the beginning so that the resulting combination becomes a delmicron neologism.

The fourth pattern is to combine the first part of the first word and the second word by clipping off the last part of the words. An example is found in the combination of the words hybrid and flexible. The hybrid word will be clipped at the end so that only the hy- part is left, then the flexible word will also be clipped at the end so that only the flex- part is left, the end result of this combination is hyflex neologism.

The last pattern is clipping at morpheme boundaries. Blending process for this type requires indepth knowledge of the person who uses it. This is because this type of blending often confuses whether the resulting word comes from the blending or compounding process. The most common example can be seen in the word Oxbridge. If someone does not have knowledge of the origin of the word, someone will think that the word Oxbridge is the result of a compounding process, whereas the word Oxbridge is the result of a blending process between the words Oxford and Cambridge.

4.3 Blends with phonemic overlap and clipping

According to Enarsson (2006), there are two types of blends were most frequent. They are the previous blends; blends with clipping and blends with phonemic overlap and clipping. This type of blending process combines two different types of blending. Some of the words resulting from the blending process use a clipping process on one or more parts of the word and use the overlapping process at the same time. Some examples can be seen in the word Californication. This word is composed of the word California and fornication which contain the same element; forni. The word California has been clipped at the end of the word, while the word fornication has not been clipped at all. However, both of them go through an overlapping process in the forni word part, so the word Californication can be categorized into the type of blends with clipping and overlapping. In the case of COVID-19 neologism, there is a word that has the same type, it is maskulinity.

Researchers have obtained 200 neologisms scattered in various sources, the neologism data will be classified according to the type of blending according to the constituent components.

Table 1. Neologisms and their blending types

$\begin{gathered} \hline \text { Blending } \\ \text { Types } \end{gathered}$	Neologism	Total
Blends with phonemic overlap	Coronacronym /kə'rəunəkrənım/, coronamigos /kə'rəunə'mi:,gəઇ/, coronangst /kə'rəunəŋst/, coronapocalypse /kə'rəunə'pvkə,lips/, coronarsehole /kə' rəunə:(r)s həul/, coronasshole /kə' rəunəs, həul/, coronostalgia /kə'rəunn' stældзə/, coviday /'kəuvideı/, covideo /'kəuvidiəu/, covidea /'kəuvidıə/, covidengue /'kəuvidengi/, covidiot /'kəuvidiət/, covidivorce /'kəuvidı'vo:(r)s/, covidobbing /'kəuvidpb/, emaskulation /ı'ma:skjuleIfən/, goutbreak /gavtbrerk/, kung-flu /,kıyflu:/, mask-ara /ma:ska:rə/, maskulinity /ma:skju'linəti/, maskne /ma:skni/, namastay-inside /ns'mæster'ın,said/, pain-demic /pen'demık/, panicdemic /'pænık'demık/, plandemic /pæn'demık/, quarantainment /'kwprən'teinmənt/,	31

	quaranteen /'kwprənti:n/, shecession /fi:'sef(ə)n/, social diss-tancing /, səuf(ə)1 'distənsin/, spreadneck /spred, nek/, strollout/strəul, aut/, whensday /wenzdeı/.	
Blends with clipping	coronaquake /kə'rəunəkwerk/, coronavac /kə'rəunəvæk/, convexit /kənveksit/, cornteen /kə:(r)nti:n/, covidanoid /'kəovid, ənəId/, covidgilent /'kəuvidjarlənt/, covidpreneur /'kəuvidprə'n3:(r)/, covidsthetic /'kəuvids' θ etik/, covid vax /'kəuvid væks /, delmicron /'del 'maikrən/, flu bros /flu:brbs/, flu rona /flu:rəunə/, friendcation /frend'kerf(ə)n/, halfcinated/ha:fsənestrd/, homecation /həum'keIf(ə)n/, homeference /həumf(ə)rans/, hyflex /'har'fleks/, isobar /'aisəu, ba:(r)/, iso-cation /'assəv'keif(ə)n/, iso-cut /'aisəukıt/, iso-smug /'aisəusmıg/, jab cab /dzæb'kæb/, jabfest /d孔æb' fest/, lady rona /'lerdi rounə/, lockblocked /lpkblokt/, locktail /lok, tell/, miss rona /misrəuna/, miss tine /misti:n/, pancession /pæn'sef(ə)n/, quaranbae 'kwpron, bi:/, quaranhoe /'kwprənhəu/, rampdown /ræmdaun/, ronabae /rəunəbi://, rona breath/rəonəbre日/, rona bump /rəunəbsmp/, rona check/rəunətfek/, rona date /rəounədet//, rona dobbing /rəunədpbbiy/, rona fear /rəunəfiə(r)/, rona hunter /rəunə'hıntz(r)/, ronaland /rəunəlænd/, ronaloner /rəunə'ləunə(r)/, ronamate /rəunəmert/, rona rage /rəunəreid3/, rona romance /rəunərəu'mæns/, rona season /rəunə'sizz($) \mathrm{n}$ /, ronavax /rəuna'væks/, roro /rəurəu/, safecation /serf'keff(ə)n/, scariant /ska:(r)ient/, schoolcation /sku:l'kelf(ə)n/, self-iso /self'aisəu/, shamdemic /Serm'demik/, solocation /'səuləu'kerf(e)n/, vax pass /'vaks'pa:s/, vaxrate 'vaksrent/, zarty /za:(r)ti/.	63
Blends with phonemic overlap and clipping	 /kə'rəunə'ri:ta/, coronasomnia /kə'rəunə'spmnia/, coronaspiracy /kə'rəunə'spirəsi/, coronaversary /ka'rəuna'v3:(r)s(ə)ri/, coronaverse /kə'rəunə, vз:(r)s/, coronazoned /kə'rəunəzəund/, coroneologism /kə'rəoni' $\mathbf{1 l}$, dJız(ә)m/, coronic /kə'kronık/, coronial /kə'rəunial/, corono /kə'rəunəઇ/, coronopticon /kə'rəun'ppttkpn/, covember 'kəuvembə(r)/, covidarity /'kəuvidærəti/, covidcidence /'kəuvidsid(ə)ns/, covided 'kəuviddd/, covidiction /'kəuvidıkf(ə)n/, covidient /'kəuvidiənt/, covidiocy kəuvidiəsi/, covidite /'kəovidatt/, covidnated /'kəuvidnettrd/, covillain /'kəuvılən/, covillennial /'kəuvı 'leniəl/, covirgin /'kəuvz:(r)d3ın/, cova /'kəə 'væ/, cower /'kəu $\partial(\mathrm{r})$ /, decompression /, di:kəm'pref(ə)n/, deja Wuhan /derja:, wu:'hæn/, drivecation /dravv'keIf(ə)n/, elbump /'elbımp/, fascination /,fæss'neIf(e)n/, fauxvid /fəuvid/, handsancisco /hændsæn'siskəu/, hopium /həuppiəm/, inflammageing /ınflə' meid3ı1/, lockstalgia /lok'stæld3ə/, loxit /lpkst/, maskhole /ma:sk həul/, mockdown /mok daun/, moronavirus /'mə rnnə' varras/, novid /nəuvid/, omicold /əu'markəold/, palindrome /pælın,drəum/, pandating /pæn'dettry/, pandemicide /pæn'deməsard/, pandemicon /pæn'demık(ə)n/, pandemimoore /pæn'demı mo:(r)/, pandemonium ,pæn'deməuniəm/, pandenemy /pæn'denəmi/, pandumbic /pæn'd $\Delta \mathrm{mik} /$, panorama /pæn' ra:mə/, panoramic /,pæn’'ræmik/, pfairies /feəri:z/, pfizernated/faizənettrd/, phygital /'fisit(e)l/, quarandating /'kwbran'dettr//, quaranqueen /'kwbrankwi:n/, /'kworantrad/, quaranticide /'kworəntisard/, quaranticka /'kworəntiko:/, quaranticipation /'kwbrantssi pelf(2)n/, quarantimes /'kworantarmz/, quarantini /rəunə'kəustə(r)/, ronalation/rəunə'leff(ə)n/, ronavation/rəunə'verf(ə)n/, ronazation /rəunə'zeIf(ə)n /, scamdemic /skæm'demik/, spendemic /spend'demik/, syndemic sin'demik/, tech-celeration /'tek, sela'rerf(o)n/, tory brexit /'tori' breksit/, vaccication væksi:keIf(ə)n/, twindemic /twn'demik/, vaccident /'væksi:n/, vaccinated 'væksi:nerttd/, vaccinazi /'væksi:na:tsi /, vaccinitized /'væksinintarzd/, vax cert 'væksə(r)'t/, vax holes /'vækshəulz/, vaxident /'væksid(o)nt/, vaxinista 'væksi:ni:sta/, vaxsplainer /'væksplemə(r)/ workation /wz:(r)k'keIf(ə)n/, Wuhanosaurus /, wu: 'hænə,ss:(r)us/, zoombie /zu:mbi/, zooty call/zu:tiks:1/, zumping /zampig/.	105

Table 1 demonstrates all the neologisms that have been collected through the screening of new words during the COVID-19 pandemic according to Newmark's theory of neologisms. The collected neologisms are categorized into blending types according to their respective constituent components. Neologisms are not only displayed according to their letter components, but also how they are pronounced. Researchers made various efforts to get phoneme results from analyzing the basic components that make up blending and looking them up in the dictionary. Supporting words where neologisms are found also have an important role so that researchers are able to analyze the words that make up the blending of neologisms. The resulting data is an approximation because it fits the definition of neologism itself that they are new words that are entering the process of general acceptance. It should be noted that the words that make up the blending, such as covid, corona, lockdown and other similar word that have been accepted at general acceptance are considered one word so that they are not divided into smaller word components.

Neologisms in the blending type blends with phonemic overlap have resulted in 31 data that have been collected from 200 available neologisms. Examples of neologisms such as coronacronym, coronapocalypse, covideo, covidivorce and strollout very clearly show the overlapping parts of their typesetting components or graphemes, while neologisms such as kung-flu, maskne, shecession and whensday must be displayed along with their phonemic components so that overlapping parts can be seen clearly. The 31 neologisms categorized into blending types with phonemic overlap are finally in accordance with the requirements of the blending type itself.

Next is the blends with clipping blending type which has collected 63 neologisms data. Neologisms such as airgasm are blending forms of the components of the words air and orgasm where it is clear that there is a word clipped in the word orgasm. Analyzing this type of blending also requires accuracy by looking at the phonemic construction so that the data presented is in accordance with the requirements.

The last type of blending, namely blends with phonemic overlap and clipping is the answer to the first research question because it is the most widely used type of blending and its frequency further leaves the other two types of blending with the acquisition of neologisms as many as 105 data. Neologisms such as copium from the words covid and opium have been clipped and overlapped on the phonetic part so that they have met the requirements as a type of blends with phonemic overlap and clipping.

Furthermore, 105 data from the type of blending blends with phonemic overlap and clipping will be analyzed using the graphemic and phonemic components to find answers to how influential people are in recognizing blending.

Table 2. Analysis of neologisms based on the constituent components of graphemes and phonemes

This analytical process was introduced by Gries (2004) which complements Kaunisto's (2000) analysis of blending analysis, but is adapted to the needs of current research.

There are three examples of blending of the types of blends with phonemic overlap and clipping as the most widely used blending types in table 2 . In the table, it is seen how neologisms are analyzed using their graphemic and phonemic components. It is clear that there are differences between the constituent components that analyze the graphemic and phonemic components. There are several neologisms whose graphemic components are more than phonemic components, and vice versa. This certainly affects how one understands blending. Table 2 has presented the neologisms of copium which were analyzed for their graphemic and phonemic components. The results show that this neologism has the same graphemic and phonemic components. The overlapping part is considered as the part that is experiencing blending and this neologism has a not too significant percentage between the overlapping word parts (ib) and the non-overlapping word parts (nib) so that the overlap in this neologism does not have a significant impact on the blending recognition process. This neologism can be easily recognized through its constituent words, both spoken and written.

Coronaed neologisms also give the same result, where the overlapping part of the word (ib) has a smaller percentage than the non-overlapping part of the word (nib) so that the overlapping part of the word does not provide enough information about what we want to know. This neologism tends to have many perceptions of its constituent components.

The third neologism in this table coronageddon is a complement to the explanation of the two previous examples where this neologism only has an ib percentage of 16% in graphemes and 9% in phonemes, this proves that the overlapping parts do not at all prove any component of the word experiencing clipping, in fact the nib has a big role in proving blended words.

Table 3. Characteristics of neologisms

Neologism	Graphemes		Phonemes	Analysis		
			Graphemes	Phonemes		
Coronic	1	$0 \quad \mathrm{a}$		ว әЈ ə	$3 / 7 \mathrm{nib}=43 \%$	$4 / 7 \mathrm{nib}=57 \%$
	Overlap	c ron	k r n	$4 / 7 \mathrm{ib}=57 \%$	$3 / 7 \mathrm{ib}=43 \%$	
	2	$\mathrm{h} \quad$ ic	p Ik			
Fascination	1	f \boldsymbol{s} e	$f \quad \mathrm{t}$	$5 / 11 \mathrm{nib}=46 \%$	$3 / 9 \mathrm{nib}=34 \%$	
	Overlap	a cinat	\mathfrak{x} sineı	$6 / 11 \mathrm{ib}=54 \%$	6/9 ib $=66 \%$	
	2	V c \quad ion				
Pandemonium	1	ic	e	$5 / 11$ nib $=46 \%$	$6 / 12 \mathrm{nib}=50 \%$	
	Overlap	pandem	pænd m I	6/11 ib = 54\%	6/12 ib = 50\%	
	2	onium	ว əひn әm			
Palindrome	1	e ic	e ik	$5 / 10 \mathrm{nib}=50 \%$	$5 / 10 \mathrm{nib}=50 \%$	
	Overlap	pa nd m	pæ nd m	$5 / 10 \mathrm{ib}=50 \%$	$5 / 10 \mathrm{ib}=50 \%$	
	2	li ro e	li rəひ			

The data that differs from most of the characteristics of neologisms are shown in table 3. The data in this table demonstrates that there are several neologisms that have significant differences so that neologisms in the COVID-19 era are considered very diverse.

In coronic neologisms, for example, this neologism presents a contrast from the three neologisms in table 2 where ib in graphemes obtains a higher percentage than nib so that the overlapping parts of words are considered to have an effect on the disclosure of neologism components when read. However, it is different in phonemes which presents a different fact that ib is always lower than nib so that when coronic neologisms are heard, the overlap in these neologisms does not provide enough information about the components of the neologism.

Fascination neologisms can be said to be rare because they present the same analytical results for both graphemes and phonemes. The blending components of this neologism are in stark contrast to the example in table 2.

In contrast to the previous examples, pandemonium neologisms show equal results for ib and nib on the phonemes, while palindromes are equal on both sides, both graphemes and phonemes. So that neologisms are proven to be able to be recognized based on overlapping components or not. The boundary between graphemes and phonemes also seems to be open because people can guess the word components when neologisms are read or heard. Table 3 seems to explain that the neologism component cannot be generalized, because there are facts that are different from what has been analyzed.

Table 4. Neologisms Analysis

Neologism	Graphemes		Phonemes	Analysis		
			Graphemes	Phonemes		
Loxit	1	lockdown		ln daun	$5 / 5 \mathrm{nib}=100 \%$	516 nib $=84 \%$
	Overlap		k	$010 \mathrm{ib}=0 \%$	116ib $=16 \%$	
	2	exit	e sit			
Vaxcert	1	vax	vak	$777 \mathrm{nib}=100 \%$	5/6 nib $=84 \%$	
	Overlap		s	$010 \mathrm{ib}=0 \%$	116ib $=16 \%$	
	2	certificate	$\partial(r)$ tifikat			

Referring to the definition of blends with phonemic overlap and clipping, this study also found that neologisms that overlap phonemicly do not necessarily overlap graphemicly. For example, in loxit neologisms and vax certs, the graphemes show the percentage of nib at 100% and $0 \% \mathrm{in} \mathrm{ib}$, as well as in the vax cert neologism. However, all of the neologisms categorized into this type, no neologisms were found that did not overlap in the phonemes analysis.

Table 5. Neologisms Analysis

A new phenomenon that is no less interesting than this research is the discovery of blending neologisms composed of three word components. The covidiocy neologism, for example, is composed of three overlapping words. The researcher presents data from this three-component neologism with the same analysis process by calculating the ib from the overlapping part and the nib from the nonoverlapping part. Furthermore, data from the two constituent words and the three constituent words will be displayed side by side to find out the similarities and differences.

All data calculated in tables 2, 3, 4 and 5 do not count silent letters on phonemics so that the resulting calculations are in accordance with public hearing expectations.

Figure 1. Comparison of graphemes and phonemes

Figure 1 presents a bar graph of the graphemic and phonemic percentages. The 101 neologism data of the two constituent words studied are presented as a percentage of their nib and ib . The calculation result of the graphemes nib is 76.97% and the ib is only 23.03%. The results that are not much different are shown by nib phonemes who earn 75.73% and their ib only 24.27%. When compared, nib on graphemes has a higher percentage of about 1.24% than nib phonemes, but ib on graphemes has a lower percentage of about 1.24% than ib phonemes. This 1.24% figure shows that nib and ib are tied to each other. Generally, the results shown by graphemes and phonemes are not much different.

Figure 2. Comparison of graphemes and phonemes (three constituent words)
The researcher also displays the results of the calculation of 4 neologism data whose constituent components consist of three words in figure 2. In this figure there is a graphemic and phonemic percentage bar graph. The calculation result of grapheme nib is 67% and ib 33%. While the results of the phoneme nib get 73% with $\mathrm{ib} 27 \%$. In comparison, the nib on the grapheme has a higher percentage of about 6% than the phoneme nib, but the ib on the grapheme has a lower percentage of about 6% than the phoneme ib . As in figure 1 , the number 6% is the same number that results from the distance between graphemes and phonemes. This also shows that nib and ib are a unity that cannot be separated from each other.

5. Conclusion

The current study investigates the use of the blending process in shaping the neologisms of the COVID-19 pandemic that has spread widely in society since the first case of COVID-19 was confirmed in China on December 8, 2019 to January 31, 2022.

From the results of research using 200 neologism data collected from various sources on the internet and social media during the COVID-19 period, it can be concluded that of the three types of blending proposed by Algeo (1977), the type of blending process is the most frequently used in neologisms during the COVID-19 pandemic is a type of blends with phonemic overlap and clipping with the acquisition of 105 data from 200 neologisms studied. The rest is divided into 63 data on blends with clipping and 31 data on blends with phonemic overlap. The 105 data that fall into the category of blends with phonemic overlap and clipping are divided into 101 data on neologisms which have a constituent component of two source words, and 4 data on neologisms which have constituent components of three source words. Citing the results of the discussion above, it can be concluded that people who experienced changes during the COVID-19 pandemic used many types of blending with overlapping and clipping processes on the parts of the words they used. The overlapping part of each
blending analyzed always shows a lower percentage than the non-overlapping part, so it can be concluded that in the process of blending with phonemic overlap and clipping, the overlapping part does not provide enough information on the two or three words that undergo the blending process.

Then, other results show that graphemic and phonemic also have an influence on the blending recognition process. Blends with phonemic overlap and clipping can be easily recognized verbally and in writing because the difference between the two does not show results that are too significant.

From the results obtained, this study would like to provide input to people who work in the information dissemination section, especially information related to public health, to write and deliver news headlines that use blending with more nib components than the ib if the blending is created by itself to attract attention audience interest to make it easier to recognize and understand. This research can also be used as reference material for practitioners in the health sector or scientists who want to name their findings or something similar so that their purpose or use can be guessed directly and become a description by people who hear and see with only one name. Finally, the expected impact of all this is the dissemination of useful information that can be easily captured accurately by public.

The research carried out only focuses on the blending process, especially blends with phonemic overlap and clipping, so this research still needs to be further refined by the results of other studies in the future. Researchers hope that future research can provide more complete information so that research on neologisms and blending is more extensive.

Acknowledgements

First and foremost, we are very grateful to Prof. Dr. Abdul Hakim Yassi, M.A. For his comments on this study and to Dr. Sukmawaty, M.Hum for her advice to make this research better. Moreover, we would like to express our sincere thanks to the reviewers and the editor. All errors remain our own.

References

Ahmad, D., \& Tchantchaleishvili, V. (2021). Commentary: Zoom into the coronary anastomosis during COVID-19. Jtcvs Open.

Algeo, J. (1977). Blends, a structural and systemic view. American speech, 52(1/2), 47-64.
Alyeksyeyeva, I. O., Chaiuk, T. A., \& Galitska, E. A. (2020). Coronaspeak as key to coronaculture: Studying new cultural practices through neologisms. International Journal of English Linguistics, 10(6), 202-212. https://doi.org/10.5539/ijel.v10n6p202

Anderson, J. M. (2006). Malmkjær, Kirsten, ed. The Linguistics encyclopedia (Ebook ed.). London.
Asif, M., Zhiyong, D., Iram, A., \& Nisar, M. (2021). Linguistic analysis of neologism related to coronavirus (COVID-19). Social Sciences \& Humanities Open, 4(1), 100201. https://doi.org/10.1016/j.ssaho.2021.100201
Budiu, R., \& Anderson, J. R. (2001). Word learning in context: Metaphors and neologisms. School of Computer Science, Carnegie Mellon University.

Celik, I., Muukkonen, H., \& Dogan, S. (2021). A model for understanding new media literacy: Epistemological beliefs and social media use. Library \& Information Science Research, 43(4), 101125. https://doi.org/10.1016/j.lisr.2021.101125

Chatterjee, S. (Ed.). (2021). COVID-19: Tackling Global Pandemics through Scientific and Social Tools, Elsevier.

Enarsson, A. (2006). New Blends in the English Language. Karlstads University.
Gries, S. T. (2004). Shouldnt it be breakfunch? A quantitative analysis of blend structure in English.
Gries, S. T. (2004). Some characteristics of English morphological blends. In Papers from the 38th Regional Meeting of the Chicago Linguistics Society (Vol. 2, pp. 201-216). Chicago Linguistics Society.
Gryksa, K., \& Neumann, I. D. (2022). Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology, 135, 105601. https://doi.org/10.1016/j.psyneuen.2021.105601

Haddad Haddad, A., \& Montero Martínez, S. (2020). COVID-19: a metaphor-based neologism and its translation into Arabic. https://doi.org/10.22323/2.19050201

Hosseinzadeh, N. M. (2014). New blends in English language. International Journal of English Language and Linguistics Research, 2(2), 15-26.

Kaunisto, M. (2000). Relations and proportions in English blend words. In Fourth Conference of the International Quantitative Linguistics Association.

Kitzlerová, J. (2022). Mayakovsky's Neologisms: Word-Formation Models, Functions, Afterlife. Russian Literature. https://doi.org/10.1016/j.ruslit.2021.12.003
Lei, S., Yang, R., \& Huang, C. R. (2021). Emergent neologism: A study of an emerging meaning with competing forms based on the first six months of COVID-19. Lingua, 258, 103095. https://doi.org/10.1016/j.lingua.2021.103095

Melgaard, J., Monir, R., Lasrado, L. A., \& Fagerstrøm, A. (2022). Academic Procrastination and Online Learning During the COVID-19 Pandemic. Procedia computer science, 196, 117-124. https://doi.org/10.1016/j.procs.2021.11.080

Newmark, P. (1988). A textbook of translation (Vol. 66). New York: Prentice hall.
Perez-Cepeda, M., \& Arias-Bolzmann, L. G. (2022). Sociocultural factors during COVID-19 pandemic: Information consumption on Twitter. Journal of Business Research, 140, 384-393. https://doi.org/10.1016/j.jbusres.2021.11.008

Shendell, D. G., Gonzalez, L. N., Campbell, M. L., Aggarwal, J., \& Kaplun, E. (2021). Implementation of online work-related safety and health trainings for students and educators during and after the COVID-19 pandemic: One model in New Jersey. Explore (New York, NY), 17(4), 380-382. https://doi.org/10.1016/j.explore.2021.04.007

Stenetorp, P. (2010). Automated extraction of swedish neologisms using a temporally annotated corpus. Skolan för datavetenskap och kommunikation, Kungliga Tekniska högskolan.
Yule, G. (2020). The study of language. Cambridge university press.

AUTHOR BIODATA

Nurhalimah Amiruddin, Department of English Language Studies, Hasanuddin University, Indonesia
Abdul Hakim Yassi, Department of English Language Studies, Hasanuddin University, Indonesia
Sukmawaty, Department of English Language Studies, Hasanuddin University, Indonesia

Appendix A．Analysis of neologisms based on the constituent components of graphemes and phonemes（consist of two component words）

	Neologism	Graphemes		Phonemes	Analysis		
				Graphemes	Phonemes		
1	Copium	1	c v d		k v d	$3 / 5 \mathrm{nib}=60 \%$	$3 / 5 \mathrm{nib}=60 \%$
		Overlap	0 i	əひ i	$2 / 5 \mathrm{ib}=40 \%$	$2 / 5 \mathrm{ib}=40 \%$	
		2	p um	p əm			
2	Coronaed	1	oro a	ərəu	6／8 nib $=75 \%$	$6 / 9 \mathrm{nib}=67 \%$	
		Overlap	c $\quad \mathrm{n}$	k \quad n \quad－	$2 / 8 \mathrm{ib}=25 \%$	$3 / 9 \mathrm{ib}=33 \%$	
		2	a celled	x s ld			
3	Coronageddon	1	co on	kər unə	$10 / 12 \mathrm{nib}=84 \%$	10／11 nib $=91 \%$	
		Overlap	r a	$\boldsymbol{\partial}$	$2 / 12 \mathrm{ib}=16 \%$	$1 / 11 \mathrm{ib}=9 \%$	
		2	a m geddon	a：（r）m m ged（ə）n			
4	Coronanoia	1	co on	kə unə	8／10 nib $=80 \%$	9／11 nib $=82 \%$	
		Overlap	$r \quad \mathbf{a}$	ro	$2 / 10 \mathrm{ib}=20 \%$	$2 / 11 \mathrm{ib}=18 \%$	
		2	pa noia	рx nэə			
5	Coronapolitan	1	co na	kə Unə	11／13 nib $=85 \%$	11／13 nib $=85 \%$	
		Overlap	ro	ro	$2 / 13 \mathrm{ib}=15 \%$	$2 / 13 \mathrm{ib}=15 \%$	
		2	met politan	met pplit（） \mathbf{n}			
6	Coronarita	1	co on	kər unə	8／10 nib $=80 \%$	10／11 nib $=91 \%$	
		Overlap	r a	ə	$2 / 10 \mathrm{ib}=20 \%$	$1 / 11 \mathrm{ib}=9 \%$	
		2	$\mathrm{ma} \quad \mathrm{g} \quad$ rita	ma：（r）g ri：tə			
7	Coronasomnia	1	coro a	kərəひ 0	$11 / 12 \mathrm{nib}=92 \%$	12／13 nib $=93 \%$	
		Overlap	n	n	$1 / 12 \mathrm{ib}=8 \%$	$1 / 13 \mathrm{ib}=7 \%$	
		2	i somnia	1 somniə			
8	Coronaspiracy	1	ro a	rəu $\boldsymbol{0}$	$10 / 13 \mathrm{nib}=77 \%$	11／14 nib $=79 \%$	
		Overlap	co n	kə \quad n	$3 / 13 \mathrm{ib}=23 \%$	$3 / 14 \mathrm{ib}=21 \%$	
		2	spiracy	spirəsi			
9	Coronaversary	1	coro a	kərəひ \boldsymbol{r}	12／13 nib $=93 \%$	11／12 nib $=92 \%$	
		Overlap	n	n	$1 / 13 \mathrm{ib}=7 \%$	$1 / 12 \mathrm{ib}=8 \%$	
		2	a niversary	æ ıV3：（r）s（ə）ri			
10	Coronaverse	1	coro a	kərəu $\boldsymbol{0}$	$10 / 11 \mathrm{nib}=91 \%$	9／10 nib $=90 \%$	
		Overlap	n	n	$1 / 11 \mathrm{ib}=9 \%$	$1 / 10 \mathrm{ib}=10 \%$	
		2	u iverse	ju：iv3：（r）s			
11	Coronazoned	1	co o a	kə $\boldsymbol{\partial J} \boldsymbol{O}$	$9 / 11 \mathrm{nib}=82 \%$	10／12 nib $=84 \%$	
		Overlap	r n	r $\quad \mathrm{n}$	$2 / 11 \mathrm{ib}=18 \%$	$2 / 12 \mathrm{ib}=16 \%$	
		2	f ie dzoned	f e dzoond			
12	Coroneologism	1	coro a	kərə〕 ${ }^{\text {a }}$	12／13 nib $=93 \%$	13／14 nib $=93 \%$	
		Overlap	n	n	$1 / 13 \mathrm{ib}=7 \%$	$1 / 14 \mathrm{ib}=7 \%$	
		2	eologism	iplod3ız（ə）m			
13	Coronic	1	$0 \quad \mathrm{a}$	$\boldsymbol{\partial}$ ว ${ }^{\text {a }}$	$3 / 7$ nib $=43 \%$	$4 / 7 \mathrm{nib}=57 \%$	
		Overlap	c ron	k $\quad \mathbf{r}$ n	$4 / 7 \mathrm{ib}=57 \%$	$3 / 7 \mathrm{ib}=43 \%$	
		2	$\mathrm{h} \quad$ ic	v $\mathbf{~ I k}$			
14	Coronial	1	coro a	kərəu ə	$7 / 8$ nib $=88 \%$	$8 / 9 \mathrm{nib}=89 \%$	
		Overlap	n	n	$1 / 8 \mathrm{ib}=12 \%$	$1 / 9 \mathrm{ib}=11 \%$	
		2	millen ial	mile İl			
15	Corono	1	coro a	kərə〕	$5 / 6$ nib $=84 \%$	6／8 nib $=75 \%$	
		Overlap	n	nə	$1 / 6 \mathrm{ib}=16 \%$	$2 / 8 \mathrm{ib}=25 \%$	
		2	0	U			

16	Coronopticon	1	coro a	kərəu a	$11 / 12$ nib $=92 \%$	12/13 nib $=93 \%$
		Overlap	n	n	$1 / 12 \mathrm{ib}=8 \%$	$1 / 13 \mathrm{ib}=7 \%$
		2	pa opticon	pæ pptrknn		
17	Covember	1	c id	k id	6/8 nib $=75 \%$	$5 / 8 \mathrm{nib}=63 \%$
		Overlap	ov	วuv	$2 / 8 \mathrm{ib}=25 \%$	$3 / 8 \mathrm{ib}=37 \%$
		2	n ember	n embo(r)		
18	Covidarity	1	cov	kəひv	$8 / 10 \mathrm{nib}=80 \%$	9/11 nib $=82 \%$
		Overlap	id	Id	$2 / 10 \mathrm{ib}=20 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	sol arity	sol ærəti		
19	Covidcidence	1	cov d	kəuv d	11/12 nib $=92 \%$	$10 / 11 \mathrm{nib}=91 \%$
		Overlap	i	1	$1 / 12 \mathrm{ib}=8 \%$	$1 / 11 \mathrm{ib}=9 \%$
		2	ncidence	nsid(ə)ns		
20	Covided	1	ovid	əuvid	6/7 nib $=86 \%$	$7 / 8 \mathrm{nib}=88 \%$
		Overlap	c	k	$1 / 7 \mathrm{ib}=14 \%$	$1 / 8 \mathrm{ib}=12 \%$
		2	ancelled	æns(ə)IId		
21	Covidiction	1	covi	kəuvi	$10 / 11$ nib $=91 \%$	9/10 nib = 90\%
		Overlap	d	d	$1 / 11 \mathrm{ib}=9 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	ad iction	ə ik $\int(\boldsymbol{\partial}) \mathrm{n}$		
22	Covidient	1	c vi	k $\mathbf{~ v V}$	$7 / 9$ nib $=78 \%$	$7 / 10 \mathrm{nib}=70 \%$
		Overlap	o d	O Id	$2 / 9 \mathrm{ib}=22 \%$	$3 / 10 \mathrm{ib}=30 \%$
		2	be ient	b iont		
23	Covidite	1	covi	kə VI	$7 / 8$ nib $=88 \%$	$7 / 9 \mathrm{nib}=78 \%$
		Overlap	d	0 d	$1 / 8 \mathrm{ib}=12 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	eru ite	er ait		
24	Covidnated	1	co d	kəU d	8/10 nib $=80 \%$	$10 / 12 \mathrm{nib}=84 \%$
		Overlap	v i	v I	$2 / 10 \mathrm{ib}=20 \%$	$2 / 12 \mathrm{ib}=16 \%$
		2	acc nated	æks neitid		
25	Covillain	1	co d	kəu d	$7 / 9$ nib $=78 \%$	6/8 nib $=75 \%$
		Overlap	vi	VI	$2 / 9 \mathrm{ib}=22 \%$	$2 / 8 \mathrm{ib}=25 \%$
		2	llain	lən		
26	Covillennial	1	cov d	kəuv d	11/12 nib $=92 \%$	$10 / 11 \mathrm{nib}=91 \%$
		Overlap	i	1	$1 / 12 \mathrm{ib}=8 \%$	$1 / 11 \mathrm{ib}=9 \%$
		2	m Ilennial	m leniol		
27	Covirgin	1	co d	kəU Id	6/8 nib $=75 \%$	$7 / 8 \mathrm{nib}=88 \%$
		Overlap	vi	v	$2 / 8 \mathrm{ib}=25 \%$	$1 / 8 \mathrm{ib}=12 \%$
		2	rgin	3:(r)d3ın		
28	Cova	1	co id	kəU id	$3 / 4 \mathrm{nib}=75 \%$	$4 / 5 \mathrm{nib}=80 \%$
		Overlap	v	v	$1 / 4 \mathrm{ib}=25 \%$	$1 / 5 \mathrm{ib}=20 \%$
		2	accine	$æ_{\text {eksin }}$		
29	Cower	1	vid	a vid	$3 / 5 \mathrm{nib}=60 \%$	$2 / 4 \mathrm{nib}=50 \%$
		Overlap	co	k \boldsymbol{O}	$2 / 5 \mathrm{ib}=40 \%$	$2 / 4 \mathrm{ib}=50 \%$
		2	wer	a $\partial(\mathrm{r})$		
30	Decompression	1	pandemi	pændemı	$12 / 13 \mathrm{nib}=93 \%$	9/10 nib $=90 \%$
		Overlap	c	k	$1 / 13 \mathrm{ib}=7 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	ompression	әmpre $\int($) n		
31	Deja Wuhan	1	déjà v	deiza: v	8/9 nib $=89 \%$	8/9 nib $=89 \%$
		Overlap	u	\mathbf{u} :	$1 / 9 \mathrm{ib}=11 \%$	$1 / 9 \mathrm{ib}=11 \%$
		2	w han	w hæn		
32	Drivecation	1	dri e	draI	$10 / 11$ nib $=91 \%$	$7 / 8 \mathrm{nib}=88 \%$
		Overlap	v	v	$1 / 11 \mathrm{ib}=9 \%$	$1 / 8 \mathrm{ib}=12 \%$
		2	acation	${ }_{\text {2keIf }}(\boldsymbol{r}) \mathrm{n}$		

33	Elbump	1	el ow	el วย	$5 / 6 \mathrm{nib}=84 \%$	$5 / 6 \mathrm{nib}=84 \%$
		Overlap	b	b	$1 / 6 \mathrm{ib}=16 \%$	$1 / 6 \mathrm{ib}=16 \%$
		2	ump	ımp		
34	Fascination	1	f \mathbf{s} e	f	$5 / 11 \mathrm{nib}=46 \%$	$3 / 9$ nib $=34 \%$
		Overlap	a cinat	a sinel	$6 / 11 \mathrm{ib}=54 \%$	6/9 ib $=66 \%$
		2	v c ion	v k		
35	Fauxvid	1	faux	f	$7 / 7 \mathrm{nib}=100 \%$	$4 / 6 \mathrm{nib}=67 \%$
		Overlap	-	$\partial \boldsymbol{0}$	$0 / 0 \mathrm{ib}=0 \%$	$2 / 6 \mathrm{ib}=33 \%$
		2	covid	k vid		
36	Handsancisco	1	hand- it zer	hænd $\begin{array}{lllll}\text { ita } & \text { z } & \text { r }\end{array}$	$8 / 12 \mathrm{nib}=67 \%$	$7 / 12 \mathrm{nib}=59 \%$
		Overlap	san i	sæn I \quad I	$4 / 12 \mathrm{ib}=33 \%$	$5 / 12 \mathrm{ib}=41 \%$
		2	franc sco	frans sk $\mathbf{0}$		
37	Hopium	1	h e	h	$4 / 6$ nib $=67 \%$	$4 / 7 \mathrm{nib}=58 \%$
		Overlap	ор	әор	$2 / 6 \mathrm{ib}=33 \%$	$3 / 7 \mathrm{ib}=42 \%$
		2	ium	iəm		
38	Inflammageing	1	inflamm t o	Infləm $\int($)n	10/13 nib $=77 \%$	9/10 nib $=90 \%$
		Overlap	a in	eI	$3 / 13 \mathrm{ib}=23 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	ge g	d3ı]		
39	Isocation	1	isol	ais 1	$4 / 9 \mathrm{nib}=45 \%$	$4 / 8$ nib $=50 \%$
		Overlap	ation) eif(ə)n	$5 / 9 \mathrm{ib}=55 \%$	$4 / 8 \mathrm{ib}=50 \%$
		2	vaC	v k		
40	Isofashion	1	isol t	aisəleı	6/10 nib $=60 \%$	6/8 nib $=75 \%$
		Overlap	a ion	$\int(\boldsymbol{\partial}) \mathrm{n}$	$4 / 10 \mathrm{ib}=40 \%$	$2 / 8 \mathrm{ib}=25 \%$
		2	f sh	fæ		
41	Isolationship	1	iso	aiso	$7 / 13$ nib $=54 \%$	$7 / 11 \mathrm{nib}=64 \%$
		Overlap	lation	leif(ə)n	$6 / 13 \mathrm{ib}=47 \%$	$4 / 11 \mathrm{ib}=36 \%$
		2	re ship	r1		
42	Lockstalgia	1	1 ckdown	1 kdaun	$10 / 11 \mathrm{nib}=91 \%$	$8 / 9$ nib $=89 \%$
		Overlap	0	D	$1 / 11 \mathrm{ib}=9 \%$	$1 / 9 \mathrm{ib}=11 \%$
		2	n stalgia	n stæld3ə		
43	Loxit	1	lockdown	ln daun	$5 / 5 \mathrm{nib}=100 \%$	$5 / 6 \mathrm{nib}=84 \%$
		Overlap	-	k	$0 / 0 \mathrm{ib}=0 \%$	$1 / 6 \mathrm{ib}=16 \%$
		2	exit	e sit		
44	Maskhole	1	m k	ma k	$6 / 8$ nib $=75 \%$	$7 / 8$ nib $=88 \%$
		Overlap	as	S	$2 / 8 \mathrm{ib}=25 \%$	$1 / 8 \mathrm{ib}=12 \%$
		2	shole	æ həul		
45	Mockdown	1	m	m	$5 / 8$ nib $=63 \%$	$5 / 7 \mathrm{nib}=72 \%$
		Overlap	ock	pk	$3 / 8 \mathrm{ib}=37 \%$	$2 / 7 \mathrm{ib}=28 \%$
		2	1 down	1 davn		
46	Moronavirus	1	m	ms: \quad D	$7 / 11 \mathrm{nib}=64 \%$	$9 / 11 \mathrm{nib}=82 \%$
		Overlap	oron	r $\quad \mathrm{l}$	$4 / 11 \mathrm{ib}=36 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	c avirus	kə әЈ əvairzs		
47	Novid	1	n	n	$4 / 5 \mathrm{nib}=80 \%$	$4 / 6 \mathrm{nib}=67 \%$
		Overlap	0	əひ	$1 / 5 \mathrm{ib}=20 \%$	$2 / 6 \mathrm{ib}=33 \%$
		2	c vid	k vid		
48	Omicold	1	omi \quad r n	əumai r n	$5 / 7$ nib $=72 \%$	$7 / 9 \mathrm{nib}=78 \%$
		Overlap	c 0	k $\boldsymbol{\partial}$	$2 / 7 \mathrm{ib}=28 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	ld	old		
49	Palindrome	1	e ic	e lk	$5 / 10 \mathrm{nib}=50 \%$	$5 / 10 \mathrm{nib}=50 \%$
		Overlap	pa nd m	pæ nd m	$5 / 10 \mathrm{ib}=50 \%$	$5 / 10 \mathrm{ib}=50 \%$
		2	li ro e	li rav		
50	Pandating	1	pan em c	pæn m k	$7 / 9$ nib $=78 \%$	6/9 nib $=67 \%$
		Overlap	d i	de I	$2 / 9 \mathrm{ib}=22 \%$	$3 / 9 \mathrm{ib}=33 \%$
		2	at ng	It J		

51	Pandemicon	1	pand m	pændem	$7 / 10 \mathrm{nib}=70 \%$	$7 / 9$ nib $=78 \%$
		Overlap	e ic	Ik	$3 / 10 \mathrm{ib}=30 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	r str tion	ri'str $\quad \int(\boldsymbol{\theta}) \mathrm{n}$		
52	Pandemimoore	1	pan c	pæn k	8/12 nib $=67 \%$	6/10 nib $=60 \%$
		Overlap	demi	demı	$4 / 12 \mathrm{ib}=33 \%$	$4 / 10 \mathrm{ib}=40 \%$
		2	moore	mo:(r)		
53	Pandemonium	1	ic	e k	$5 / 11 \mathrm{nib}=46 \%$	6/12 nib $=50 \%$
		Overlap	pandem	pænd m I	$6 / 11 \mathrm{ib}=54 \%$	$6 / 12 \mathrm{ib}=50 \%$
		2	onium	ə əठn əm		
54	Pandenemy	1	pand ic	pænde k	$6 / 8$ nib $=75 \%$	$8 / 10 \mathrm{nib}=80 \%$
		Overlap	em	mi	$2 / 8 \mathrm{ib}=25 \%$	$2 / 10 \mathrm{ib}=20 \%$
		2	en $\quad \mathrm{y}$	eno		
55	Pandumbic	1	pan e ic	pæn e Ik	$7 / 9$ nib $=78 \%$	6/8 nib $=75 \%$
		Overlap	d m	d m	$2 / 9 \mathrm{ib}=22 \%$	$2 / 8 \mathrm{ib}=25 \%$
		2	u b	$\boldsymbol{\Lambda}$		
56	Panorama	1	demic	demik	$5 / 8$ nib $=63 \%$	$5 / 8$ nib $=63 \%$
		Overlap	pan	pæn	$3 / 8 \mathrm{ib}=37 \%$	$3 / 8 \mathrm{ib}=37 \%$
		2	orama	əra:mə		
57	Panoramic	1	de	de	$3 / 9$ nib $=34 \%$	$3 / 9$ nib $=34 \%$
		Overlap	pan mic	pæn mik	$6 / 9 \mathrm{ib}=66 \%$	$6 / 9 \mathrm{ib}=66 \%$
		2	ora	əræ		
58	Pfairies	1	p ze	a a	$5 / 8$ nib $=63 \%$	$3 / 6 \mathrm{nib}=50 \%$
		Overlap	f i r	f IZ	$3 / 8 \mathrm{ib}=37 \%$	$3 / 6 \mathrm{ib}=50 \%$
		2	a ies	eər		
59	Pfizernated	1	pf \mathbf{z} r	fa zo	$8 / 10 \mathrm{nib}=80 \%$	9/10 nib $=90 \%$
		Overlap	i e	1	$2 / 10 \mathrm{ib}=20 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	vacc nat d	væks neitıd		
60	Phygital	1	phys c	f z k	$6 / 9$ nib $=67 \%$	$3 / 6$ nib $=50 \%$
		Overlap	i al	1 I (o)1	$3 / 9 \mathrm{ib}=33 \%$	$3 / 6 \mathrm{ib}=50 \%$
		2	d git	d d3 t		
61	Quarandating	1	qu ran e	kwprən n	$7 / 11 \mathrm{nib}=64 \%$	$9 / 11 \mathrm{nib}=82 \%$
		Overlap	a tin	t	$4 / 11 \mathrm{ib}=36 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	d g	dei y		
62	Quaranqueen	1	$\operatorname{aran}_{\text {ti }} \mathrm{e}$	prant	$6 / 9$ nib $=67 \%$	$5 / 9$ nib $=56 \%$
		Overlap	qu $\quad \mathrm{n}$	kw i:n	$3 / 9 \mathrm{ib}=33 \%$	$4 / 9 \mathrm{ib}=44 \%$
		2	ee			
63	Quaransheen	1	quaranti e	kwprənt	$10 / 11 \mathrm{nib}=91 \%$	$7 / 9 \mathrm{nib}=78 \%$
		Overlap	n	i:n	$1 / 11 \mathrm{ib}=9 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	shee	J		
64	Quaranstream	1	quaran in	kwpron n	$10 / 12 \mathrm{nib}=84 \%$	$9 / 11 \mathrm{nib}=82 \%$
		Overlap	$t \quad e$	t i:	$2 / 12 \mathrm{ib}=16 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	S \mathbf{r} am	$\mathbf{s} \mathbf{r} \quad \mathrm{m}$		
65	Quarantanning	1	quaran e	kwprən n	$10 / 13 \mathrm{nib}=77 \%$	$9 / 11 \mathrm{nib}=82 \%$
		Overlap	t in	1 I	$3 / 13 \mathrm{ib}=23 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	ann g	æn \boldsymbol{y}		
66	Quaranteam	1	quaran ine	kwprən n	9/10 nib $=90 \%$	$7 / 9$ nib $=78 \%$
		Overlap	t	ti:	$1 / 10 \mathrm{ib}=10 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	eam	m		
67	Quarantech	1	quaran in	kwpron in	$10 / 12 \mathrm{nib}=84 \%$	$10 / 11 \mathrm{nib}=91 \%$
		Overlap	$t \quad \mathbf{e}$	t	$2 / 12 \mathrm{ib}=16 \%$	$1 / 11 \mathrm{ib}=9 \%$
		2	chnolog,	eknd bdji		
68	Quaranteered	1	quaran in	kw r n	$10 / 12 \mathrm{nib}=84 \%$	$5 / 10 \mathrm{nib}=50 \%$
		Overlap	$t \mathrm{e}$	p onti	$2 / 12 \mathrm{ib}=16 \%$	$5 / 10 \mathrm{ib}=50 \%$
		2	volun ${ }^{\text {e }}$ red	v 1 1		

69	Quaranticide	1	quarant n	kwprənt n	$10 / 12 \mathrm{nib}=84 \%$	11/12 nib $=92 \%$
		Overlap	i e	1	$2 / 12 \mathrm{ib}=16 \%$	$1 / 12 \mathrm{ib}=8 \%$
		2	su cid	su: said		
70	Quaranticka	1	quaran ne	kwprən n	$9 / 11 \mathrm{nib}=82 \%$	$8 / 10 \mathrm{nib}=80 \%$
		Overlap	ti	t	$2 / 11 \mathrm{ib}=18 \%$	$2 / 10 \mathrm{ib}=20 \%$
		2	cka	ko:		
71	Quaranticipation	1	quar e	kwprə	$11 / 16$ nib $=69 \%$	$10 / 14$ nib $=72 \%$
		Overlap	anti n	ntı n	$5 / 16 \mathrm{ib}=31 \%$	$4 / 14 \mathrm{ib}=28 \%$
		2	cipatio	x siperf(ə)		
72	Quarantimes	1	quaran n	kwprən n	$8 / 11 \mathrm{nib}=73 \%$	$9 / 11 \mathrm{nib}=82 \%$
		Overlap	ti e	1 I	$3 / 11 \mathrm{ib}=27 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	m S	a mz		
73	Quarantini	1	qu an e	kwnran	5/10 nib $=50 \%$	$7 / 10 \mathrm{nib}=70 \%$
		Overlap	ar tin	ti:n	$5 / 10 \mathrm{ib}=50 \%$	$3 / 10 \mathrm{ib}=30 \%$
		2	$\mathrm{m} \quad \mathrm{i}$	ma:(r) $\quad \mathbf{i}$		
74	Quarantitties	1	quaran n	Kwprən n	10/13 nib $=77 \%$	$10 / 12 \mathrm{nib}=84 \%$
		Overlap	ti e	tI	$3 / 13 \mathrm{ib}=23 \%$	$2 / 12 \mathrm{ib}=16 \%$
		2	tti s	tti:z		
75	Quarantroll	1	quaran ine	kwprən in	10/11 nib $=91 \%$	$9 / 10 \mathrm{nib}=90 \%$
		Overlap	t	t	$1 / 11 \mathrm{ib}=9 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	roll	rol		
76	Quarantunes	1	quaran i	kwprən i	8/11 nib $=73 \%$	$9 / 11 \mathrm{nib}=82 \%$
		Overlap	t ne	t n	$3 / 11 \mathrm{ib}=27 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	\mathbf{u} S	ju: z		
77	Quaranzine	1	qu $\quad \mathbf{r} \quad \mathrm{n}_{\mathrm{t}}$	kwpr n_{t}	$5 / 10 \mathrm{nib}=50 \%$	$6 / 9 \mathrm{nib}=67 \%$
		Overlap	a a ine	θ i:n	$5 / 10 \mathrm{ib}=50 \%$	$3 / 9 \mathrm{ib}=33 \%$
		2	$\mathrm{m} \quad \mathrm{g} \quad \mathbf{z}$	mæg \mathbf{z}		
78	Ronacation	1	coron	kərəun	9/10 nib $=90 \%$	$8 / 9$ nib $=89 \%$
		Overlap	a	$\boldsymbol{\partial}$	$1 / 10 \mathrm{ib}=10 \%$	$1 / 9 \mathrm{ib}=11 \%$
		2	v cation	v keif(ə)n		
79	Ronacoaster	1	co na	kə \quad n	$9 / 11 \mathrm{nib}=82 \%$	$7 / 11 \mathrm{nib}=64 \%$
		Overlap	ro	rəu \boldsymbol{r}	$2 / 11 \mathrm{ib}=18 \%$	$4 / 11 \mathrm{ib}=36 \%$
		2	ller-coaster	1 (r)kəustə(r)		
80	Ronalation	1	cor na	kərəun	$9 / 10 \mathrm{nib}=90 \%$	$8 / 9$ nib $=89 \%$
		Overlap	0	$\boldsymbol{\partial}$	$1 / 10 \mathrm{ib}=10 \%$	$1 / 9 \mathrm{ib}=11 \%$
		2	is lation	ais leiff(ə)n		
81	Ronavation	1	co $\mathbf{0}$ a	kə $\boldsymbol{\text { OU }}$	$8 / 10 \mathrm{nib}=80 \%$	$5 / 8$ nib $=63 \%$
		Overlap	r n	r nə	$2 / 10 \mathrm{ib}=20 \%$	$3 / 8 \mathrm{ib}=37 \%$
		2	e ovation	e verif(o)		
82	Ronazation	1	co on	kə Unə	$8 / 10 \mathrm{nib}=80 \%$	$7 / 9$ nib $=78 \%$
		Overlap	r a	r $\boldsymbol{\partial}$	$2 / 10 \mathrm{ib}=20 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	e lization	1 lazelf(ə)n		
83	Scamdemic	1	sc m	sk m	$8 / 9$ nib $=89 \%$	$8 / 9$ nib $=89 \%$
		Overlap	a	\boldsymbol{x}	$1 / 9 \mathrm{ib}=11 \%$	$1 / 9 \mathrm{ib}=11 \%$
		2	p ndemic	p ndemık		
84	Spendemic	1	S e	$\mathrm{S} \quad \mathrm{e}$	$6 / 9$ nib $=67 \%$	$6 / 9$ nib $=67 \%$
		Overlap	p nd	p nd	$3 / 9 \mathrm{ib}=33 \%$	$3 / 9 \mathrm{ib}=33 \%$
		2	a emic	\mathfrak{x} emik		
85	Syndemic	1	sy rgy	SI \quad (r) 3	$6 / 8$ nib $=75 \%$	$5 / 8$ nib $=63 \%$
		Overlap	$n \quad \mathrm{e}$	n d I	$2 / 8 \mathrm{ib}=25 \%$	$3 / 8 \mathrm{ib}=37 \%$
		2	pa d mic	рæ \quad em ${ }^{\text {m }}$		
86	Tech-celeration	1	te hno gy	te no d3	11/14 nib $=79 \%$	8/12 nib $=67 \%$
		Overlap	c 10	k la I	$3 / 11 \mathrm{ib}=27 \%$	$4 / 12 \mathrm{ib}=33 \%$
		2	a ce erati n	ว se re \quad d(ə)n		

87	Vaccication	1	${ }_{c} \mathbf{c}{ }^{\text {n }}$	ækSIn	$3 / 10 \mathrm{nib}=30 \%$	$5 / 9 \mathrm{nib}=56 \%$
		Overlap	va ation	v elf ${ }^{\text {d }}$)n	$7 / 10 \mathrm{ib}=70 \%$	$4 / 9 \mathrm{ib}=44 \%$
		2	c	ว \mathbf{k}		
88	Twindemic	1	twi	twI	$8 / 9$ nib $=89 \%$	$8 / 9 \mathrm{nib}=89 \%$
		Overlap	n	n	$1 / 9 \mathrm{ib}=11 \%$	$1 / 9 \mathrm{ib}=11 \%$
		2	pa demic	pæ demik		
89	Vaccident	1	vac e	væk	$6 / 9$ nib $=67 \%$	$5 / 8$ nib $=63 \%$
		Overlap	ci $\quad \mathrm{n}$	SI $\quad \mathrm{n}$	$3 / 9 \mathrm{ib}=33 \%$	$3 / 8 \mathrm{ib}=37 \%$
		2	in de t	in d(ə) t		
90	Vaccinated	1	vac na	vax neI	$5 / 10 \mathrm{nib}=50 \%$	$4 / 10 \mathrm{nib}=40 \%$
		Overlap	ci ted	ks I tid	$5 / 10 \mathrm{ib}=50 \%$	$6 / 10 \mathrm{ib}=60 \%$
		2	ex	1 a		
91	Vaccinazi	1	vacci e	væksi:	8/9 nib $=89 \%$	$9 / 10 \mathrm{nib}=90 \%$
		Overlap	n	n	$1 / 9 \mathrm{ib}=11 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	azi	a:tsi		
92	Vaccinitized	1	vacci e	væk i	11/12 nib $=92 \%$	$9 / 11 \mathrm{nib}=82 \%$
		Overlap	n	S n	$1 / 12 \mathrm{ib}=8 \%$	$2 / 11 \mathrm{ib}=18 \%$
		2	sa itized	\mathfrak{x} Itaızd		
93	Vax cert	1	vax	væk	$7 / 7 \mathrm{nib}=100 \%$	$5 / 6 \mathrm{nib}=84 \%$
		Overlap	-	S	0/0 ib = 0\%	$1 / 6 \mathrm{ib}=16 \%$
		2	certificate	ə(r)tifikət		
94	Vax holes	1	v \mathbf{x}	v k	$7 / 8$ nib $=88 \%$	$7 / 9 \mathrm{nib}=78 \%$
		Overlap	a	\mathfrak{x} s	$1 / 8 \mathrm{ib}=12 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	ssholes	həolz		
95	Vaxident	1	vax	væk	$9 / 9 \mathrm{nib}=100 \%$	$7 / 8$ nib $=88 \%$
		Overlap	-	S	$0 / 0 \mathrm{ib}=0 \%$	$1 / 8 \mathrm{ib}=12 \%$
		2	incident	m Id(\%)nt		
96	Vaxinista	1	V x	v ks	$8 / 9$ nib $=89 \%$	$9 / 10 \mathrm{nib}=90 \%$
		Overlap	a	\boldsymbol{x}	$1 / 9 \mathrm{ib}=11 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	f shionista	f ¢onistə		
97	Vaxsplainer	1	va	væ	9/10 nib $=90 \%$	$7 / 9$ nib $=78 \%$
		Overlap	x	ks	$1 / 10 \mathrm{ib}=10 \%$	$2 / 9 \mathrm{ib}=22 \%$
		2	e plainer	1 plemə(r)		
98	Workation	1	work	w3:(r)	10/10 nib $=100 \%$	5/6 nib $=84 \%$
		Overlap	-	k	$0 / 0 \mathrm{ib}=0 \%$	$1 / 6 \mathrm{ib}=16 \%$
		2	vacation	və eif(ə)n		
99	Wuhanosaurus	1	wuha	wu:hæ	$11 / 12 \mathrm{nib}=92 \%$	9/10 nib $=90 \%$
		Overlap	n	n	$1 / 12 \mathrm{ib}=8 \%$	$1 / 10 \mathrm{ib}=10 \%$
		2	di o-saurus	dai $\boldsymbol{\text { ass: }}$ (r)us		
100	Zoombie	1	0	u:	$4 / 7$ nib $=58 \%$	$3 / 5$ nib $=60 \%$
		Overlap	zo m	z m	$3 / 7 \mathrm{ib}=42 \%$	$2 / 5 \mathrm{ib}=40 \%$
		2	bie	v ${ }^{\text {bi }}$		
101	Zumping	1	Zoo	zu:	$6 / 7$ nib $=86 \%$	$5 / 6$ nib $=84 \%$
		Overlap	m	m	$1 / 7 \mathrm{ib}=14 \%$	$1 / 6 \mathrm{ib}=16 \%$
		2	du ping	d Λ pily		
Total					nib $=76,97$	nib $=75,73$
					ib $=23,03$	$\mathrm{ib}=24,27$

Appendix B. Analysis of neologisms based on the constituent components of graphemes and phonemes (consist of three component words)

[^0]: ${ }^{1}$ Corresponding author.
 E-mail address: nurhalimahamiruddin02@ gmail.com

