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Abstract 

This article provides a description of the most common methods in solving the quadratic assignment problem with 

extensive reference material. This problem is a difficult combinatorial problem whose solution (for any instance) 

is even impossible to establish within a given radius unless the class of problems P coincide with the class of 

problems NP. The QAP is considered one of the most complex combinatorial optimization problems and is the 

model for many real life problems such as facility layout, campus planning, backboard wiring, scheduling, 

computer manufacturing, turbine balancing and process communications among other applications.  

Another reason that highlights the structure and complexity of QAP is that many others significant NP-Complete 

combinatorial optimization problems result in particular cases of QAP, some of them are: The Traveling Salesman 

Problem (TSP): How an agent should visit a set of 𝑛 cities returning to the starting city in such a way that each 

city is just visited once and the cost of the tour is the minimum?. Maximum Clique Problem (MCP): Given a graph 

𝐺 = (𝑉, 𝐸)  with |𝑉| = 𝐸, this problem consists in finding the maximum number 𝑘 ≤ 𝑛 such that there exists a 

subset 𝑉1 de  𝑉 with  𝑘 vertices which induces a clique in 𝐺 

 

Keywords: Quadratic assignment problem, combinatorial problem. 

 

Introduction 

The Quadratic Assignment Problem consists of assigning a set of n facilities in a set of n locations, 

knowing the flow between facilities and the distances between locations. The goal is to assign each 

facility to each location in such way flow and distances are minimized. 

 

The mathematical model is: 

Min𝜎∈𝑆𝑛
∑ ∑ 𝑓𝑖𝑗𝑑𝜎(𝑖)𝜎(𝑗)

𝑛−1

𝑗=0

𝑛−1

𝑖=0
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where 𝐷 = (𝑑𝑖𝑗) is a distance matrix, 𝐹 = (𝑓𝑖𝑗) is a flow matrix, 𝑆𝑛 =  {𝜎 | 𝜎: 𝑁 → 𝑁}, where 𝑁 =

{0,1, … , 𝑛 − 1}. 

 

The QAP was introduced by Koopmans & Beckmann in 1957 [1] and was mathematically proven to 

belong to the NP-Complete Problems category by Sahni & Gonzalez in 1976 [2]. 

 

The QAP is considered one of the most complex combinatorial optimization problems and is the model 

for many real life problems such as facility layout, campus planning, backboard wiring, scheduling, 

computer manufacturing, turbine balancing and process communications among other applications [3]. 

 

Some exact methods, like Branch and Bound, Cutting Plane and Bender's decomposition [4, 5, 6, 7, 8] 

have been applied to solve instances of this problem. However, the amount of resources required by 

these methods make them non-applicable to instances of size n > 30 [9, 10]. In order to tackle this issue, 

some approximation methods, like Greedy Randomized Adaptive Search, Tabu Search, Simulated 

Annealing, ACO (Ant Colony Optimization), PSO (Particle Swarm Optimization), and Evolutionary 

Algorithms (especially Genetic Algorithms) 

[11, 12, 13, 14, 15, 16, 17, 18, 19] have been applied to find near optimal solutions to instances of the 

QAP 

 

Techniques to solve the QAP 

 

A summary of the state of the art of sequential techniques (exact methods and approach methods) to 

solve the QAP are: 

 

Exact Methods 
 

Correspond to mathematical programming techniques, some of them are based on the divide and 

conquer strategy, i.e. partition the search space of the problem in sub-problems and to optimize each 

one of them separately. the most common are: 

 

• Branch and bound (B&B). It is based on an implicit enumeration of all problem's solutions. 

The search is carried out on the whole problem domain; the set solutions is thought of as forming 

a rooted tree, the root represents the problem itself, and the leaves additional restrictions that 

bound the solution to the problem. 

The solution of the problem improves as the iterations advance. The branching operator that 

determines the order in which the branches are explored is used (for example, a deep search or 

a wide search) and the pruning operator that eliminates solutions that do not take to the best, 

considering lower bounds for every partial solution. The method ends when there are no more 

branches or nodes to explore or when all the nodes have been eliminated. The quality of the 

bounds and the branching strategy determine the quality of the method. Generally, the QAP is 

solved by B&B from its representation as linear assignment problem [20] and using bounding 

techniques, as Gilmore-Lawler lower bounds method [4]. 

 

• Dynamic programming. It is based on Richard Bellman's optimality principle “All sub-policy 

of an optimal policy must be optimal as well". Solving general problem in a recursive manner 

positing less complex problems that have the same structure of the original problems; this 

process is applied until problems with immediate solution are found, then, the process starts 

again until a solving general problem is found. 
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• Relaxations. A problem is solved with less requirements than the original problem, the most 

common relaxations are the linear programming relaxations and Lagrangian relaxations. The 

former solves a problem with real variables when the original requires only integer solutions, 

with this, lower bounds are found and they can be used with the B&B method for branching 

part. In the Lagrangian relaxation some restrictions of the problem (usually the most difficult) 

are removed and incorporated to objective function through a penalizing function [21]. Some 

relaxations for QAP appear in [5, 22, 23]. 

 

• Benders decomposition. QAP formulated as a linear programming (mixed integer) problem 

can be solved fixing integer variables and solving the corresponding dual problem. The time for 

this convergence to happen is long and it is usually applied only to small instances, but when 

applying cutting plans, good sub-optimal solutions are produced, [6]. 

 

• Cutting planes. Cutting planes were proposed by Gomory [24]. They are based on adding 

specific restrictions to relaxed Linear Programming problem. The method approximates the 

polyhedron represented by the convex shell of all feasible solutions of the original problem by 

the polytope of the relaxed problem. 

 

 

Approach methods 
 

They are divided in metaheuristics based of trajectory and metaheuristics based on population. 
 

Metaheuristics based on trajectories. Consist of making determined searches in solutions space; they 

start with only one initial solution, solution in each iteration is replaced by another (frequently a better 

one). These methods have a spirit oriented to exploit promising regions of the search space (intensify 

the search). The most common in the solution of the QAP are: 

 

• Construction methods. They are considered the simplest heuristics for the QAP. The 

quality of the solutions is not the best, however, they are very simple to implement 

computationally and given their properties they can be used as part of more intelligent methods 

for the QAP. Basically they start with an empty permutation, and recursively assign places to 

facilities according to some certain criteria until all facilities have been assigned. These methods 

were formulated for the first time by Gilmore [4] towards 1960. Another method of construction 

with better results is the one proposed by Muller in [25]. 

 

• Local Search method (LS). They are algorithms that produce optimal local solutions 

in the following way: a neighborhood 𝑁(𝜎0) of a permutation 𝜎0 of the QAP consists of all 

permutations that in some sense are close to 𝜎0, therefore a local optimal QAP solution is a 

permutation 𝜎̅ so that: 

 

∑ ∑ 𝑓𝑖𝑗𝑑𝜎̅(𝑖)𝜎̅(𝑗)

𝑛−1

𝑗=0

𝑛−1

𝑖=0

= Min𝜎∈𝑁(𝜎0) ∑ ∑ 𝑓𝑖𝑗𝑑𝜎(𝑖)𝜎(𝑗)

𝑛−1

𝑗=0

𝑛−1

𝑖=0

 

 

The procedure starts with an initial solution and is improved through a movement to a solution 

in its neighborhood; this procedure is repeated until no solution gets 
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better. In order to obtain better results, the local search algorithms are carried out many times 

starting at different initial solutions (It is clear to use a parallel implementation). A more 

complete study appears in [26]. 

 

• 2-opt heuristic. The 2-opt local optimization heuristic is applied in order to improve 

candidate QAP solutions [50]. This method consists of performing all pairwise exchanges of all 

possible facilities on each of the locations in a particular permutation. A solution is updated with 

a better one as long as ∆𝑖𝑗< 0 in the following formula: 

 

∆𝑖𝑗= (𝑓𝑖𝑗 − 𝑓𝑗𝑖)(𝑑𝜎(𝑖)𝜎(𝑗) − 𝑑𝜎(𝑗)𝜎(𝑖))

+ ∑ ((𝑓𝑗𝑘 − 𝑓𝑖𝑘)(𝑑𝜎(𝑖)𝜎(𝑘) − 𝑑𝜎(𝑗)𝜎(𝑘))) + (𝑓𝑘𝑗 − 𝑓𝑘𝑖)(𝑑𝜎(𝑘)𝜎(𝑖) − 𝑑𝜎(𝑘)𝜎(𝑗))

𝑛−1

𝑘=0
𝑘≠𝑖,𝑗

 

with asymmetric distance and ow matrices [14], (i, j are facilities that are exchanged). 

 

A matrix formulation for ∆𝑖𝑗 is: 

∆𝒊𝒋= (𝑓𝑖𝑗 − 𝑓𝑗𝑖)(𝑑𝜎(𝑖)𝜎(𝑗) − 𝑑𝜎(𝑗)𝜎(𝑖)) + (𝐹𝑖∙ − 𝐹𝑗∙) ∙ ((𝐷𝑋𝑡)𝜎(𝑗)∙ − (𝐷𝑋𝑡)𝜎(𝑖)∙) 

                 +(𝐹∙𝑖 − 𝐹∙𝑗) ∙ ((𝑋𝐷)∙𝜎(𝑗)∙ − (𝑋𝐷)∙𝜎(𝑖)) 

where the symbol ∙ interprets an internal product, (𝑓𝑖𝑗 = (𝑓𝑗𝑖 = 0 in the addends 2 

and 3. 𝐹𝑖∙_ indicates the row k of the matrix F and 𝐹∙𝑘 indicates the column k of 

the matrix F. 

 

 

• Greedy Randomized Adaptive Search Procedure (GRASP). It is a very usual 

heuristic for combinatorial optimization problems. GRASP is a combination of greedy elements 

and randomized search elements, it is composed of a construction phase, where two facilities 

are assigned to two locations among all those with minimal costs and an improvement phase 

which includes randomized elements to avoid falling into local optima. In [12] a detail 

implementation for QAP is described. 

 

• Tabu Search (TS). This technique is used to “remember" which solutions have already 

been visited and to abandon neighborhoods that have optimal locations. 

In QAP the movements used are usually swaps but are controlled by a tabu list, which does not 

allow certain movements on the current solution, as movements change, the list is actualized 

during the search. The solution starts with an initial feasible solution, only if selected solution 

is not in the tabu list, the initial solution is updated by the selected solution (this new solution is 

not necessarily better than the initial) and the search in the neighborhood is repeated. Different 

studies relate the convenient size of the tabu list, with respect to the QAP, in [13] there is a deep 

study. The tabu search algorithm has parallel nature in its implementation dividing its search 

load between various processors. Parallel implementations are proposed in [27, 28]. 

 

• Simulated annealing (SA). It is an approach that exploits the analogy between 

combinatorial optimization problems and mechanical statistics problems (many particles 

physical system). The feasible solutions of a combinatorial optimization problem correspond to 

states of physical system and values of objective function correspond to the energy of physical 

system state. A material is heated and then slowly cooled to change its physical properties. the 
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heat causes that the atoms augment their energy and move from the initial positions that would 

correspond to local minimums in an optimization problem. The slow cooling produces low 

energy states (thermic balance) that would correspond to global minimums in optimization 

problem. Wilhelm et al. [29] obtain good results for QAP with a sophisticated simulated 

annealing approach. 

 

Metaheuristics based on populations. They are iterative techniques that apply stochastic 

operators on a set of individuals (population), each individual corresponds to a coded version of 

a possible problem solution. The performance (quality) of each individual is evaluated through 

an aptitude function; variation operators on some of the individuals guide the whole population 

to high quality solutions, which confer to these metaheuristics a good exploration power. The 

most common metaheuristics applied to the QAP are the following: 

 

• Genetic algorithms (GAs). Genetic algorithms (GAs) is one of the most outstanding 

approaches in the field of evolutionary algorithms and are defined as general purpose iterative 

adaptive search procedures. This is the metaheuristic considered in this work. The GAs have 

the advantage that describe in an abstract and rigorous way the collective adaptation of 

population of individuals to given environment, based on behavior similar to natural system. 

A simple Genetic Algorithm usually begins with a population of individuals randomly generated 

or sometimes pre-established by previous experiences or generated by some heuristic procedure. 

The simple GA maintains the population of constant size and works iteratively as follows: 

During each step in the iteration (called generation) individuals are evaluated and assigned a 

fitness value. To form a new population (from the previous one) the selection operator is applied, 

which consists of choosing individuals with a probability proportional to their relative aptitude; 

this ensures that the expected number of times an individual is chosen is proportional to their 

relative performance in the population. It is expected that individuals above the average have 

more copies in the new population (higher probability of reproduction), while individuals below 

the average have more risk of disappearing. This operator acts as generator of “intermediate 

parents" who will be responsible for giving rise to a better next population than the previous 

one. To incorporate new individuals into the population, some genetic operators are required, 

such as the crossover operator (which simulates sexual reproduction) and/or the mutation 

operator (which simulates asexual reproduction). The crossover, which is the most important 

operator of recombination, consists of taking two individuals called parents (extracted by the 

selection operator) and generating two new individuals called offsprings, exchanging parts of 

the parents; sub-strings of parent chains are exchanged from a certain crossing point chosen 

randomly. With the crossover, the search is guided towards good regions in the problem domain. 

The mutation operator essentially offers the possibility of avoiding a premature convergence to 

a local optimum, changing each symbol in some chains with a reduced probability. In more 

sophisticated genetic algorithms, crossover and especially mutation do not necessarily have to 

remain constant throughout the simple AG process. In general, the crossover aims to combine 

the most characteristic features of parent chains and therefore increase the fitness of new 

individuals. The mutation only affects one individual at a time and its intention is to avoid a 

premature convergence to a local optimum. Without the mutation operator, potentially useful 

genetic material could be lost. Since Algorithms are stochastic procedures, their performance 

varies from one execution to another (unless the same random number generator is used); due 

to this, the average performance of several executions is more reliable and therefore more used 

than the results generated by a single execution of algorithm. 



242 Roberto Poveda Ch / Journal of Language and Linguistic Studies, 18(3) (2022) 237-244 

© 2022 JLLS and the Authors - Published by JLLS. 

Genetic algorithms, like most stochastic iterative algorithms, do not guarantee convergence. 

They end after a maximum number of iterations or when a satisfactory solution is reached. It 

may also happen that the quality of the results is not improved in the iterative process, therefore, 

the algorithm must be stopped before reaching the maximum number of iterations. 

A great number of research projects have been proposed for the QAP, but generally this method 

works better considering a hybrid approach with a Local Search algorithm or a Tabu Search [30, 

31]. 

 

• Ant Colony Optimization (ACO). This heuristic imitates the behavior of ants when searching 

for food. The analogy between the performance of ants and the 

solution of a combinatorial optimization problem resides in the following factors: the search 

space of ants corresponds to the set of feasible solutions for the optimization problem, each 

source of food corresponds to the value of the objective function. The adaptive memory 

component of each ant is the track of pheromones that accumulate in the less traveled roads. 

With respect to the QAP, the pheromone track of ACO, is the measure of attraction to locate a 

facility i in a location j, in [16] this procedure is described in detail. Other studies are gathered 

in [32]; Tseng and Liang, in [17] apply first a GA to find an initial population. A parallel ACO 

procedure for the QAP appear in [33]. 

 

• Particle swarm optimization (PSO). In this method a number of particles move through the 

search space with the objective of finding an optimal position (good solution). The particles 

communicate between themselves and the one with the best position (measured according to an 

aptitude function) mark influence in the rest. The particles adjust their movements 

systematically (position and speed) according to their own experience and according to the 

experience the rest of the swarm. This method is inspired in the social behavior of organisms as 

bird flocks or fish banks. Although in principle it is a method for continuous search spaces, it 

has also been applied to discrete optimization problems like the QAP (see [34, 35]) and to the 

TSP. 

Conclusions 

Solving the QAP is not an easy task. Many of these models are an important technique to find optimal 

or near optimal solutions for significant instances of the QAP. Using parallel models, such as, parallel 

genetic model (the distributed model (islands model), the cellular model (grid model)) and combining 

it with what has already been mentioned will surely improve the results obtained, and perhaps for this it 

is convenient to configure a cluster of GPUs or combine procedures in multicore architectures. 
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