Evaluation of google translate in rendering English COVID-19 texts into Arabic
Abstract
Machine Translation (MT) has the potential to provide instant translation in times of crisis. MT provides real solutions that can remove borders between people and COVID-19 information. The widespread of MT system makes it worthy of scrutinizing the capacity of the most prominent MT system, Google Translate, to deal with COVID-19 texts into Arabic. The study adopted (Costa et al., 2015a) framework in analysing the output of Google Translate output service in terms of orography, grammar, lexis, and semantics. The study’s corpus was extracted from World Health Organization (WHO), United Nations Children’s Emergency Fund (UNICEF), U.S. Food and Drug Administration (FDA), the Foreign, Commonwealth & Development Office (FCDO), and European Centre for Disease Prevention and Control (ECDC). The paper reveals that Google Translate committed a set of errors: semantic, grammatical, lexical, and punctuation. Such errors inhibit the intelligibility of the translated texts. It also indicates that MT might work as an aid to translate general information about COVID-19, but it is still incapable of dealing with critical information about COVID-19. The paper concludes that MT can be an effective tool, but it can never replace human translators.
Keywords
Full Text:
PDFReferences
Al-Salman, S., & Haider, A. S. (2021a). Covid-19 trending neologisms and word formation processes in english. Russian Journal of Linguistics, 25(1), 24–42. https://doi.org/10.22363/2687-0088-2021-25-1-24-42
Al-Salman, S., & Haider, A. S. (2021b). Jordanian University Students’ Views on Emergency Online Learning during COVID-19. Jordanian University Students’ Views on Emergency Online Learning during COVID-19 Online Learning Journal, 25. https://doi.org/10.24059/olj.v25i1.2470
Alkhawaja, L., Ibrahim, H., Ghnaim, F., & Awwad, S. (2020). Neural Machine Translation: Fine-Grained Evaluation of Google Translate Output for English-to-Arabic Translation. International Journal of English Linguistics, 10(4), 43. https://doi.org/10.5539/IJEL.V10N4P43
Almahasees, Z. (2020). Diachronic Evaluation of Google Translate, Microsoft Translator and Sakhr in English-Arabic Translation — the UWA Profiles and Research Repository. https://research-repository.uwa.edu.au/en/publications/diachronic-evaluation-of-google-translate-microsoft-translator-an
Almahasees, Z., & Jaccomard, H. (2020). Facebook translation service (FTS) usage among jordanians during COVID-19 lockdown. Advances in Science, Technology and Engineering Systems, 5(6), 514–519. https://doi.org/10.25046/aj050661
Almahasees, Z. M. (2017). Assessing the Translation of Google and Microsoft Bing in Translating Political Texts from Arabic into English. International Journal of Languages, Literature and Linguistics, 3(1), 1–4. https://doi.org/10.18178/ijlll.2017.3.1.100
Almahasees, Z., Mohammad, A.-T., & Jaccomard, H. (2021). Evaluation of Facebook Translation Service (FTS) in Translating Facebook Posts from English into Arabic in Terms of TAUS Adequacy and Fluency during Covid-19. Advances in Science, Technology and Engineering Systems Journal, 6(1), 1241–1248. https://doi.org/10.25046/AJ0601141
ALPAC. (1966). LANGUAGE AND MACHINES COMPUTERS IN TRANSLATION AND LINGUISTICS A Report by the.
ASIA Digital. (2021). Neural Machine Translation - AISA Digital. https://www.aisa.digital/neural-machine-translation/
Bojar, O. (2011). Analyzing Error Types in English-Czech Machine Translation. The Prague Bulletin of Mathematical Linguistics NUMBER, 63–76. https://doi.org/10.2478/v10108-011-0005-2
Callison-Burch, C., Osborne, M., & Koehn, P. (2006). Re-evaluating the Role of BLEU in Machine Translation Research. https://www.aclweb.org/anthology/E06-1032
Chan, S. (2014). Routledge Encyclopedia of Translation Technology - 1st Edition - Sin-W. https://www.routledge.com/Routledge-Encyclopedia-of-Translation-Technology/Chan/p/book/9780367570439
Condon, S., Parvaz, D., Aberdeen, J., Doran, C., Freeman, A., & Awad, M. (2010). Evaluation of Machine Translation Errors in English and Iraqi Arabic. http://www.lrec-conf.org/proceedings/lrec2010/pdf/106_Paper.pdf
Costa, Â., Ling, W., Luís, T., Correia, R., & Coheur, L. (2015a). A linguistically motivated taxonomy for Machine Translation error analysis. Machine Translation, 29(2), 127–161. https://doi.org/10.1007/s10590-015-9169-0
Costa, Â., Ling, W., Luís, T., Correia, R., & Coheur, L. (2015b). A linguistically motivated taxonomy for Machine Translation error analysis. Machine Translation, 29(2), 127–161. https://doi.org/10.1007/s10590-015-9169-0
Dalzell, S. (2020). Federal Government used Google Translate for COVID-19 messaging aimed at multicultural communities - ABC News. https://www.abc.net.au/news/2020-11-19/government-used-google-translate-for-nonsensical-covid-19-tweet/12897200
ECDC. (2021). Guidelines for the implementation of non-pharmaceutical interventions against COVID-19. https://www.ecdc.europa.eu/en/publications-data/covid-19-guidelines-non-pharmaceutical-interventions
Farrús, M., Farrús, F., Costa-Jussà, M. R., Mariño, J. B., Mariño, M., & Fonollosa, J. A. R. (2010). Linguistic-based Evaluation Criteria to identify Statistical Machine Translation Errors. http://translate.google.com
FDA. (2020). FDA Approves First Treatment for COVID-19 | FDA. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19
Flanagan, M. A. (1994). Error Classification for MT Evaluation. Amta, 65–72.
Frederking, R. E., Taylor, K. B., Elliott, D., Hartley, A., & Atwell, E. (2004). A Fluency Error Categorization Scheme to Guide Automated Machine Translation Evaluation. In LNAI (Vol. 3265). http://eprints.whiterose.ac.uk/82298/
Goodman, B. (2021). Lost in Translation: Language Barriers Hinder Vaccine Access. https://www.webmd.com/vaccines/covid-19-vaccine/news/20210426/lost-in-translation-language-barriers-hinder-vaccine-access
Google Translate. (2021). Google - About Google, Our Culture & Company News. https://about.google/?hl=en
Haider, A. S., & Al-Salman, S. (2020). Dataset of Jordanian university students’ psychological health impacted by using e-learning tools during COVID-19. Data in Brief, 32, 106104. https://doi.org/10.1016/j.dib.2020.106104
Henisz-Dostert, B., Macdonald, R., & Zarechnak, M. (1979). Machine Translation - Bozena Henisz-Dostert, R. R. Macdonald, Michael Zarechnak - Google Books. https://books.google.mu/books?id=St4iXxXoIIAC&printsec=frontcover#v=onepage&q&f=false
Hutchins, W., & Somers, H. (1992). An introduction to machine translation. Undefined.
Kral, P., & Václav, M. (2013). Text, Speech, and Dialogue: 18th International Conference, TSD 2015, Pilsen ... - Google Books. https://books.google.jo/books?id=SQuVCgAAQBAJ&pg=PA218&lpg=PA218&dq=imperfect+substitute+for+human+assessment+of+translation+quality&source=bl&ots=3zNabTwKIG&sig=ACfU3U2FkEIcGZMi9i50MBc0VL8MaT3o1A&hl=en&sa=X&ved=2ahUKEwjU3tv26YfvAhUJGewKHZNYBysQ6AEwBHoECA
Llitjós, A. F., Carbonell, J. G., & Lavie, A. (2005a). A framework for interactive and automatic refinement of transfer-based machine translation. https://www.aclweb.org/anthology/2005.eamt-1.13
Llitjós, A. F., Carbonell, J. G., & Lavie, A. (2005b). A Framework for Interactive and Automatic Refinement of Transfer-based Machine Translation (Vol. 87).
Merriam-Webster. (2020). Orthography | Definition of Orthography by Merriam-Webster. Https://Www.Merriam-Webster.Com/Dictionary/. https://www.merriam-webster.com/dictionary/orthography
Moreno, S. (2021). Virginia uses Google Translate for COVID vaccine information. Here’s how that magnifies language barriers, misinformation | Richmond Local News | richmond.com. https://richmond.com/news/local/virginia-uses-google-translate-for-covid-vaccine-information-heres-how-that-magnifies-language-barriers-misinformation/article_715cb81a-d880-5c98-aac5-6b30b378bbd3.html
Pan. (2016). How BLEU Measures Translation and Why It Matters | Slator. https://slator.com/technology/how-bleu-measures-translation-and-why-it-matters/
Panic, M. (2019). DQF-MQM: Beyond Automatic MT Quality Metrics - TAUS. https://blog.taus.net/dqf-mqm-beyond-automatic-mt-quality-metrics?utm_campaign=Quality Dashboard&utm_content=82798944&utm_medium=social&utm_source=twitter&hss_channel=tw-112671713
Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2001). BLEU: a method for automatic evaluation of machine translation. ACL, 311–318. https://doi.org/10.3115/1073083.1073135
S Haider, A., & Al-Salman, S. (2020). COVID-19’S IMPACT ON THE HIGHER EDUCATION SYSTEM IN JORDAN: ADVANTAGES, CHALLENGES, AND SUGGESTIONS. Humanities & Social Sciences Reviews, 8(4), 1418–1428. https://doi.org/10.18510/hssr.2020.84131
UNCIEF. (2021). Protecting families from the economic impact of COVID-19 | UNICEF. https://www.unicef.org/coronavirus/protecting-families-economic-impact-COVID-19
Vilar, D., Xu, J., Fernando D’haro, L., & Ney, H. (2007). Error Analysis of Statistical Machine Translation Output. http://www.tc-star.org/
Way, A., Haque, R., Xie, G., Gaspari, F., Popovic, M., & Poncelas, A. (2020). Facilitating Access to Multilingual COVID-19 Information via Neural Machine Translation. ArXiv. http://arxiv.org/abs/2005.00283
WHO. (2021a). Advice for the public. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
WHO. (2021b). When and how to use masks. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks
Yang, W. (2010). A Tentative Analysis of Errors in Language Learning and Use. Journal of Language Teaching and Research, 1(3), 266–268. https://doi.org/10.4304/jltr.1.3.266-268
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ISSN 1305-578X (Online)
Copyright © 2005-2022 by Journal of Language and Linguistic Studies