An analysis of Turkey’s Pisa 2015 results using two-level hierarchical linear modelling

Doğu Ataş, Özge Karadağ

Abstract


In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals, groups of individuals and communities of groups. 

In this study, the effects of the school level indicators on overall reading skills performance of 15 year-old group students within PISA 2015 Turkey application, are analyzed by using a two level hierarchical linear model. In the study, apart from sex, socioeconomic indicators of family, education level of the parents and some student level indicators regarding reading skills, school level indicators such as school type, number of students and number of teachers are also integrated to modelling process to reflecting the hierarchical data structure into the statistical model. At the end of the modelling process, factors that effects the reading skills are determined.   


Keywords


PISA 2015; reading skills; multilevel modelling; hierarchical linear models; school level variables

Full Text:

PDF

References


Aitkin, M. and Longford, N. (1986). Statistical Modelling Issues in School Effectiveness Studies. Journal of the Royal Statistical Society, 149 (1). 1-43.

Avşar, A. Ş. ve Yalçın, S. (2015). Öğrencilerin Okuma Başarılarını Açıklayan Ailesel Değişkenlerin CHAID Analizi İle Belirlenmesi. Eğitim ve Bilim, 40 (179). 1-9. doi: 10.15390/EB.2015.2890

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage Publications.

Gülleroğlu, H. D., Bilican Demir, S. ve Demirtaşlı, N. (2014). Türk Öğrencilerinin PISA 2003-2006-2009 Dönemlerindeki Okuma Becerilerini Yordayan Sosyoekonomik ve Kültürel Değişkenlerin Araştırılması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 47 (2). 201-222.

Gürsakal, S. (2012). PISA 2009 Öğrenci Başarı Düzeylerini Etkileyen Faktörlerin Değerlendirilmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 17 (1), 441-452.

MEB-EARGED (2005). PISA 2003 Projesi Ulusal Nihai Rapor. Ankara: Milli Eğitim Bakanlığı.

MEB-EARGED (2010). PISA 2009 Ulusal Ön Raporu. Ankara: Milli Eğitim Bakanlığı.

OECD (2016). PISA 2015 Technical Report. Paris: OECD Publishing.

Özdemir, B. ve Gelbal, S. (2014). PISA 2009 Sonuçlarına Göre Öğrenci Başarısını Etkileyen Faktörlerin Kanonik Ortak Etki Analizi ile İncelenmesi. Eğitim ve Bilim, 39 (175), 41-57. doi: 10.15390/EB.2014.3025

Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical Linear Models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage Publications.

Raudenbush, S. W., Bryk, A. S., & Congdon, R. (2011). HLM7 for Windows [Computer software]. Skokie, IL: Scientific Software International, Inc.

Sarıçoban, A., & Alyas, A. (2012). Metacognitive Strategies and Learner Autonomy in EFL Reading. Modern Journal of Language Teaching Methods, 2 (2). 45-68.

Taş, U. E., Arıcı, Ö., Ozarkan, H. B. & Özgürlük, B. (2016). PISA 2015 Ulusal Raporu. Ankara: Milli Eğitim Bakanlığı.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Journal of Language and Linguistic Studies
ISSN 1305-578X (Online)
Copyright © 2005-2022 by Journal of Language and Linguistic Studies